// [snippet: Ninety-Nine F# Problems - Problems 80 - 89 - Graphs] /// Ninety-Nine F# Problems - Problems 80 - 89 /// /// These are F# solutions of Ninety-Nine Haskell Problems /// (http://www.haskell.org/haskellwiki/H-99:_Ninety-Nine_Haskell_Problems), /// which are themselves translations of Ninety-Nine Lisp Problems /// (http://www.ic.unicamp.br/~meidanis/courses/mc336/2006s2/funcional/L-99_Ninety-Nine_Lisp_Problems.html) /// and Ninety-Nine Prolog Problems /// (https://sites.google.com/site/prologsite/prolog-problems). /// /// If you would like to contribute a solution or fix any bugs, send /// an email to paks at kitiara dot org with the subject "99 F# problems". /// I'll try to update the problem as soon as possible. /// /// The problems have different levels of difficulty. Those marked with a single asterisk (*) /// are easy. If you have successfully solved the preceeding problems you should be able to /// solve them within a few (say 15) minutes. Problems marked with two asterisks (**) are of /// intermediate difficulty. If you are a skilled F# programmer it shouldn't take you more than /// 30-90 minutes to solve them. Problems marked with three asterisks (***) are more difficult. /// You may need more time (i.e. a few hours or more) to find a good solution /// /// Though the problems number from 1 to 99, there are some gaps and some additions marked with /// letters. There are actually only 88 problems. /// // The solutions to the problems below use there definitions for Grahps type 'a Edge = 'a * 'a type 'a Graph = 'a list * 'a Edge list let g = (['b';'c';'d';'f';'g';'h';'k'],[('b','c');('b','f');('c','f');('f','k');('g','h')]) type 'a Node = 'a * 'a list type 'a AdjacencyGraph = 'a Node list let ga = [('b',['c'; 'f']); ('c',['b'; 'f']); ('d',[]); ('f',['b'; 'c'; 'k']); ('g',['h']); ('h',['g']); ('k',['f'])] // [/snippet] // [snippet: (***) Problem 80 : Conversions] /// Write predicates to convert between the different graph representations. With these /// predicates, all representations are equivalent; i.e. for the following problems you /// can always pick freely the most convenient form. The reason this problem is rated /// (***) is not because it's particularly difficult, but because it's a lot of work to /// deal with all the special cases. /// /// Example in F#: /// /// > let g = (['b';'c';'d';'f';'g';'h';'k'],[('b','c');('b','f'); /// ('c','f');('f','k');('g','h')]);; /// /// > graph2AdjacencyGraph g;; /// val it : char AdjacencyGraph = /// [('b', ['f'; 'c']); ('c', ['f'; 'b']); ('d', []); ('f', ['k'; 'c'; 'b']); /// ('g', ['h']); ('h', ['g']); ('k', ['f'])] /// /// > let ga = [('b',['c'; 'f']); ('c',['b'; 'f']); ('d',[]); ('f',['b'; 'c'; 'k']); /// ('g',['h']); ('h',['g']); ('k',['f'])];; /// /// > adjacencyGraph2Graph ga;; /// val it : char Graph = /// (['b'; 'c'; 'd'; 'f'; 'g'; 'h'; 'k'], /// [('b', 'c'); ('b', 'f'); ('c', 'f'); ('f', 'k'); ('g', 'h')]) (*[omit:(Solution)]*) let graph2AdjacencyGraph ((ns, es) : 'a Graph) : 'a AdjacencyGraph = let nodeMap = ns |> List.map(fun n -> n, []) |> Map.ofList (nodeMap,es) ||> List.fold(fun map (a,b) -> map |> Map.add a (b::map.[a]) |> Map.add b (a::map.[b])) |> Map.toList let adjacencyGraph2Graph (ns : 'a AdjacencyGraph) : 'a Graph= let sort ((a,b) as e) = if a > b then (b, a) else e let nodes = ns |> List.map fst let edges = (Set.empty, ns) ||> List.fold(fun set (a,ns) -> (set, ns) ||> List.fold(fun s b -> s |> Set.add (sort (a,b))) ) |> Set.toSeq |> Seq.sort |> Seq.toList (nodes, edges) (*[/omit]*) // [/snippet] // [snippet: (**) Problem 81: Path from one node to another one] /// Write a function that, given two nodes a and b in a graph, returns all /// the acyclic paths from a to b. /// /// Example: /// /// Example in F#: /// /// > paths 1 4 [(1,[2;3]);(2,[3]);(3,[4]);(4,[2]);(5,[6]);(6,[5])];; /// val it : int list list = [[1; 2; 3; 4]; [1; 3; 4]] /// /// > paths 2 6 [(1,[2;3]);(2,[3]);(3,[4]);(4,[2]);(5,[6]);(6,[5])];; /// val it : int list list = [] (*[omit:(Solution)]*) let paths start finish (g : 'a AdjacencyGraph) = let map = g |> Map.ofList let rec loop route visited = [ let current = List.head route if current = finish then yield List.rev route else for next in map.[current] do if visited |> Set.contains next |> not then yield! loop (next::route) (Set.add next visited) ] loop [start] <| Set.singleton start (*[/omit]*) // [/snippet] // [snippet: (*) Problem 82: Cycle from a given node] /// Write a predicate cycle(G,A,P) to find a closed path (cycle) P starting at a given node /// A in the graph G. The predicate should return all cycles via backtracking. /// /// Example: /// /// /// Example in F#: /// /// > cycle 2 [(1,[2;3]);(2,[3]);(3,[4]);(4,[2]);(5,[6]);(6,[5])];; /// val it : int list list = [[2; 3; 4; 2]] /// /// > cycle 1 [(1,[2;3]);(2,[3]);(3,[4]);(4,[2]);(5,[6]);(6,[5])];; /// val it : int list list = [] (*[omit:(Solution)]*) let cycle start (g: 'a AdjacencyGraph) = let map = g |> Map.ofList let rec loop route visited = [ let current = List.head route for next in map.[current] do if next = start then yield List.rev <| next::route if visited |> Set.contains next |> not then yield! loop (next::route) (Set.add next visited) ] loop [start] <| Set.singleton start (*[/omit]*) // [/snippet] // [snippet: (**) Problem 83: Construct all spanning trees] /// Write a predicate s_tree(Graph,Tree) to construct (by backtracking) all spanning trees /// of a given graph. With this predicate, find out how many spanning trees there are for /// the graph depicted to the left. The data of this example graph can be found in the file /// p83.dat. When you have a correct solution for the s_tree/2 predicate, use it to define /// two other useful predicates: is_tree(Graph) and is_connected(Graph). Both are /// five-minutes tasks! /// /// Example: /// /// /// Example in F#: (*[omit:(Solution needed)]*) let solution83 = "your solution here!!" (*[/omit]*) // [/snippet] // [snippet: (**) Problem 84: Construct the minimal spanning tree] /// Write a predicate ms_tree(Graph,Tree,Sum) to construct the minimal spanning tree of a given /// labelled graph. Hint: Use the algorithm of Prim. A small modification of the solution of /// P83 does the trick. The data of the example graph to the right can be found in the file p84.dat. /// /// Example: /// /// /// /// Example in F#: /// > let graphW = [('a',['b'; 'd';]); ('b',['a';'c';'d';'e';]); ('c',['b';'e';]); /// ('d',['a';'b';'e';'f';]); ('e',['b';'c';'d';'f';'g';]); ('f',['d';'e';'g';]); /// ('g',['e';'f';]); ];; /// > let gwF = /// let weigthMap = /// Map [(('a','b'), 7);(('a','d'), 5);(('b','a'), 7);(('b','c'), 8);(('b','d'), 9); /// (('b','e'), 7);(('c','b'), 8);(('c','e'), 5);(('d','a'), 5);(('d','b'), 9); /// (('d','e'), 15);(('d','f'), 6);(('e','b'), 7);(('e','c'), 5);(('e','d'), 15); /// (('e','f'), 8);(('e','g'), 9);(('f','d'), 6);(('f','e'), 8);(('f','g'), 11); /// (('g','e'), 9);(('g','f'), 11);] /// fun (a,b) -> weigthMap.[(a,b)];; /// /// val graphW : (char * char list) list = /// [('a', ['b'; 'd']); ('b', ['a'; 'c'; 'd'; 'e']); ('c', ['b'; 'e']); /// ('d', ['a'; 'b'; 'e'; 'f']); ('e', ['b'; 'c'; 'd'; 'f'; 'g']); /// ('f', ['d'; 'e'; 'g']); ('g', ['e'; 'f'])] /// val gwF : (char * char -> int) /// /// > prim gw gwF;; /// val it : char Graph = /// (['a'; 'd'; 'f'; 'b'; 'e'; 'c'; 'g'], /// [('a', 'd'); ('d', 'f'); ('a', 'b'); ('b', 'e'); ('e', 'c'); ('e', 'g')]) /// (*[omit:(Solution)]*) let prim (s : 'a AdjacencyGraph) (weightFunction: ('a Edge -> int)) : 'a Graph = let map = s |> List.map (fun (n,ln) -> n, ln |> List.map(fun m -> ((n,m),weightFunction (n,m)))) |> Map.ofList let nodes = s |> List.map fst let emptyGraph = ([],[]) let rec dfs nodes (ns,es) current visited = if nodes |> Set.isEmpty then (List.rev ns, List.rev es) else let (a,b) as edge = ns |> List.collect(fun n -> map.[n] |> List.filter(fun ((n,m),w) -> Set.contains m visited |> not) ) |> List.minBy snd |> fst let nodes' = nodes |> Set.remove b dfs nodes' (b::ns,edge::es) b (Set.add b visited) match nodes with | [] -> emptyGraph | n::ns -> dfs (Set ns) ([n],[]) n (Set.singleton n) (*[/omit]*) // [/snippet] // [snippet: (**) Problem 85: Graph isomorphism] /// Two graphs G1(N1,E1) and G2(N2,E2) are isomorphic if there is a bijection f: N1 -> N2 such /// that for any nodes X,Y of N1, X and Y are adjacent if and only if f(X) and f(Y) are adjacent. /// /// Write a predicate that determines whether two graphs are isomorphic. Hint: Use an open-ended /// list to represent the function f. /// /// Example: /// /// /// /// Example in F#: (*[omit:(Solution needed)]*) let solution85 = "your solution here!!" (*[/omit]*) // [/snippet] // [snippet: (**) Problem 86: Node degree and graph coloration] /// a) Write a predicate degree(Graph,Node,Deg) that determines the degree of a given node. /// /// b) Write a predicate that generates a list of all nodes of a graph sorted according to /// decreasing degree. /// /// c) Use Welch-Powell's algorithm to paint the nodes of a graph in such a way that adjacent /// nodes have different colors. /// /// /// Example: /// /// /// /// Example in F#: /// > let graph = [('a',[]);('b',['c']);('c',['b';'d';'g']);('d',['c';'e']);('e',['d';'e';'f';'g']);('f',['e';'g']);('g',['c';'e';'f'])];; /// > degree graph 'e';; /// val it : int = 5 /// > sortByDegree graph;; /// val it : char Node list = /// [ ('e',['d'; 'e'; 'f'; 'g']); ('g',['c'; 'e'; 'f']); /// ('c',['b'; 'd'; 'g']); ('f',['e'; 'g']); ('d',['c'; 'e']); /// ('b',['c']); ('a',[])] /// val it : int = 5 /// > colorGraph graph;; /// val it : (char * int) list = /// [('a', 0); ('b', 1); ('c', 0); ('d', 1); ('e', 0); ('f', 2); ('g', 1)] (*[omit:(Solution)]*) let degree (g: 'a AdjacencyGraph) node = let es = g |> List.find(fst >> (=) node) |> snd // The degree of a node is the number of edges that go to the node. // Loops get counted twice. es |> List.sumBy(fun n -> if n = node then 2 else 1) let sortByDegreeDesc (g : 'a AdjacencyGraph) = // let use this degree function instead of the one above // since we alredy have all the info we need right here. let degree (u,adj) = adj |> List.sumBy(fun v -> if v = u then 2 else 1) g |> List.sortBy(degree) |> List.rev let colorGraph g = let nodes = sortByDegreeDesc g let findColor usedColors = let colors = Seq.initInfinite id colors |> Seq.find(fun c -> Set.contains c usedColors |> not) let rec greedy colorMap nodes = match nodes with | [] -> colorMap |> Map.toList | (n,ns)::nodes -> let usedColors = ns |> List.filter(fun n -> Map.containsKey n colorMap) |> List.map(fun n -> Map.find n colorMap ) |> Set.ofList let color = findColor usedColors greedy (Map.add n color colorMap) nodes greedy Map.empty nodes (*[/omit]*) // [/snippet] // [snippet: (**) Problem 87: Depth-first order graph traversal (alternative solution)] /// Write a predicate that generates a depth-first order graph traversal sequence. The starting /// point should be specified, and the output should be a list of nodes that are reachable from /// this starting point (in depth-first order). /// /// Example: /// /// /// /// Example in F#: /// /// > let gdfo = (['a';'b';'c';'d';'e';'f';'g';], /// [('a','b');('a','c');('a','e');('b','d');('b','f');('c','g');('e','f');]) /// |> Graph2AdjacencyGraph;; /// /// val gdfo : char AdjacencyGraph = /// [('a', ['e'; 'c'; 'b']); ('b', ['f'; 'd'; 'a']); ('c', ['g'; 'a']); /// ('d', ['b']); ('e', ['f'; 'a']); ('f', ['e'; 'b']); ('g', ['c'])] /// /// > depthFirstOrder gdfo 'a';; /// val it : char list = ['a'; 'e'; 'f'; 'b'; 'd'; 'c'; 'g'] (*[omit:(Solution)]*) type Color = White = 0 | Gray = 1 | Black = 2 // The algorithm comes from the book Introduction to Algorithms by Cormen, Leiserson, Rivest and Stein. let depthFirstOrder (g : 'a AdjacencyGraph) start = let nodes = g |> Map.ofList let color = g |> List.map(fun (v,_) -> v, Color.White) |> Map.ofList |> ref let pi = ref [start] let rec dfs u = color := Map.add u Color.Gray !color for v in nodes.[u] do if (!color).[v] = Color.White then pi := (v::!pi) dfs v color := Map.add u Color.Black !color dfs start !pi |> List.rev (*[/omit]*) // [/snippet] // [snippet: (**) Problem 88: Connected components (alternative solution)] /// Write a predicate that splits a graph into its connected components. /// /// Example: /// /// /// /// Example in F#: /// > let graph = [(1,[2;3]);(2,[1;3]);(3,[1;2]);(4,[5;6]);(5,[4]);(6,[4])];; /// > connectedComponents graph;; /// val it : int AdjacencyGraph list = /// [[(6, [4]); (5, [4]); (4, [5; 6])]; /// [(3, [1; 2]); (2, [1; 3]); (1, [2; 3])]] /// > (*[omit:(Solution)]*) // using problem 87 depthFirstOrder function let connectedComponents (g : 'a AdjacencyGraph) = let nodes = g |> List.map fst |> Set.ofList let start = g |> List.head |> fst let rec loop acc g start nodes = let dfst = depthFirstOrder g start |> Set.ofList let nodes' = Set.difference nodes dfst if Set.isEmpty nodes' then g::acc else // once we have the dfst set we can remove those nodes from the graph and // add them to the solution and continue with the remaining nodes let (cg,g') = g |> List.fold(fun (xs,ys) v -> if Set.contains (fst v) dfst then (v::xs,ys) else (xs,v::ys)) ([],[]) let start' = List.head g' |> fst loop (cg::acc) g' start' nodes' loop [] g start nodes (*[/omit]*) // [/snippet] // [snippet: (**) Problem 89: Bipartite graphs] /// Write a predicate that finds out whether a given graph is bipartite. /// /// Example: /// /// /// /// Example in F#: /// /// > let gdfo = [('a', ['b'; 'c'; 'e']); ('b', ['a'; 'd'; 'f']); ('c', ['a'; 'g']);('d', ['b']); /// ('e', ['a'; 'f']); ('f', ['b'; 'e']); ('g', ['c'])];; /// /// val gdfo : (char * char list) list = /// [('a', ['b'; 'c'; 'e']); ('b', ['a'; 'd'; 'f']); ('c', ['a'; 'g']); /// ('d', ['b']); ('e', ['a'; 'f']); ('f', ['b'; 'e']); ('g', ['c'])] /// /// > isBipartite gdfo;; /// val it : bool = true (*[omit:(Solution)]*) open System.Collections.Generic; // this is where Queue<'T> is defined let isBipartite (g : 'a AdjacencyGraph) = // using the breath-first search algorithm, we can compute the distances // from the first node to the other the nodes. If all the even distance nodes // point to odd nodes and viceversa, then the graph is bipartite. This works // for connected graphs. // The algorithm comes from the book Introduction to Algorithms by Cormen, Leiserson, Rivest and Stein. let isBipartite' (g : 'a AdjacencyGraph) = let adj = g |> Map.ofList // The Color enum is defined on problem 87 let mutable color = g |> List.map(fun (v,_) -> v, Color.White) |> Map.ofList let mutable distances = g |> List.map(fun (v,_) -> v,-1) |> Map.ofList let queue = new Queue<_>() let start = List.head g |> fst color <- Map.add start Color.Gray color distances <- Map.add start 0 distances queue.Enqueue(start) while queue.Count <> 0 do let u = queue.Peek() for v in adj.[u] do if color.[v] = Color.White then color <- Map.add v Color.Gray color distances <- Map.add v (distances.[u] + 1) distances queue.Enqueue(v) queue.Dequeue() |> ignore color <- Map.add u Color.Black color let isEven n = n % 2 = 0 let isOdd = isEven >> not let d = distances // this is just so distances can be captured in the closure below. g |> List.forall(fun (v,edges) -> let isOpposite = if d.[v] |> isEven then isOdd else isEven edges |> List.forall(fun e -> d.[e] |> isOpposite)) // split the graph in it's connected components (problem 88) and test each piece for bipartiteness. // if all the pieces are bipartite, the graph is bipartite. g |> connectedComponents |> List.forall isBipartite' (*[/omit]*) // [/snippet]